1. List the elements from the given set that are rational numbers.

$$\left\{0, -2, 50, \frac{1}{\sqrt{2}}, 0.521, 2\sqrt{2}, 1.2\overline{3}, -\frac{1}{6}, \sqrt[3]{4}, \sqrt{4}\right\}$$

2. State the property of real numbers being used.

$$(2x+3y)+4z = 2x+(3y+4z)$$

3. Perform the indicated operations.

$$\frac{\frac{1}{12}}{\frac{1}{8} - \frac{1}{12}}$$

4. Evaluate each expression.

(a)
$$\left(\frac{7}{3}\right)^0 2^{-1}$$
 (b) $\frac{3^{-3}}{4^0}$ (c) $\left(\frac{1}{5}\right)^{-2}$

5. Evaluate the expression.

$$\sqrt{3}\sqrt{48}$$

- 6. Find the set $A \cap C$ if $A = \{x \mid x < 4\}$ and $C = \{x \mid -2 < x \le 6\}$.
- 7. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

$$\sqrt[3]{r^2s}\sqrt[3]{64r^4s^2}$$

8. Simplify the expression.

$$\left(\frac{a^2b^{5/3}}{a^{1/3}b^{2/3}}\right)^6$$

- **9.** A hummingbird's heart can beat 1260 times per minute. Estimate the number of times its heart will beat in 2 years. State your answer in scientific notation.
- **10.** Factor the expression completely.

$$x^{2}(x^{2}-1)-25(x^{2}-1)$$

11. Perform the indicated operation and simplify.

$$\frac{1}{x} + \frac{2}{x-1} + \frac{3}{(x-1)^2}$$

12. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

13. Find all real solutions of the quadratic equation.

$$z^2 - \frac{8}{5}z + \frac{16}{25} = 0$$

- 14. Caitlin drove from Greensville to Bluesburg at a speed of 50 mi/h. On the way back, she drove at 75 mi/h. The total trip took $7\frac{1}{2}$ h of driving time. Find the distance between these two cities.
- 15. Solve the absolute value inequality. Express the answer using interval notation.

|8x+5| > 15

- 16. Two points P and Q are given.
 - $P(0,-8), \quad Q(-11,-8)$
 - (a) Find the distance from P to Q.
 - (b) Find the midpoint of the line segment PQ.
- 17. Find the equation of the circle with center (-1,7) and radius $\sqrt{2}$.
- **18.** Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

$$x^2 + y^2 + x + 2y + \frac{5}{4} = 3$$

19. Test the equation for symmetry and sketch its graph.

$$y + x^2 = 16$$

- **20.** Find an equation for the line that passes through the point (5,1) and is perpendicular to the line x-3y+16=0.
- **21.** Find the equation of a line that passes through the point (-7, 7/2) and the midpoint of (-2, 4) and (3, 4).
- 22. Hooke's Law states that if a weight *w* is attached to a hanging spring, then the stretched length *s* of the spring is linearly related to *w*. For a particular spring we have the equation s = 0.4w + 3.5, where *s* is measured in inches and *w* in pounds. How long is the spring when a 5-lb weight is attached?
- **23.** Determine the values of the variable for which the expression is defined as a real number.

$$\left(\frac{1}{x^2+2x-15}\right)^{1/2}$$

- **24.** In a certain city, the property tax collected for a home varies directly to the valuation of the property. The tax collected on a \$105,000 home is \$2,846 per year. What is the value of a home if the tax collected is \$1,735 ?
- **25.** The resistance of a wire varies directly as its length and inversely as the square of its diameter. A wire 50 m long and 0.01 m in diameter has a resistance of 25 ohms. Find the resistance of a wire made of the same material that is 20 m long and has diameter 0.02 m.

ANSWER KEY

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form A

- **1.** 0, -2, 50, 0.521, 1.2 $\overline{3}$, $-\frac{1}{6}$, $\sqrt{4}$
- 2. Associative Property for addition
- **3.** 2
- **4.** (a) $\left(\frac{7}{3}\right)^0 2^{-1} = \frac{1}{2}$ (b) $\frac{3^{-3}}{4^0} = \frac{1}{27}$ (c) $\left(\frac{1}{5}\right)^{-2} = 25$
- **5.** $\sqrt{3}\sqrt{48} = 12$
- 6. $\{x \mid -2 < x < 4\}$
- 7. $4r^2s$
- 8. $a^{10}b^6$
- 9. 1.32×10^9
- **10.** $x^2(x^2-1)-25(x^2-1)=(x-1)(x+1)(x-5)(x+5)$
- 11. $\frac{3x^2 x + 1}{x(x-1)^2}$
- **12.** $\frac{\sqrt{3}-1}{2}$
- **13.** z = 4/5
- 14. 225 mi
- **15.** $(-\infty, -5/2) \cup (5/4, \infty)$
- **16.** (a) 11 (b) $\left(\frac{-11}{2}, -8\right)$
- $17. \quad x^2 + 2x + y^2 14y + 48 = 0$
- **18.** center $\left(-\frac{1}{2}, -1\right)$, radius $\sqrt{3}$

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form A

- **20.** y = 16 3x
- **21.** 30y 2x 119 = 0
- **22.** 5.5 inches
- **23.** $(-\infty, -5) \cup (3, \infty)$
- **24.** \$64,010
- **25.** 2.5 ohms

1. List the elements from the given set that are rational numbers.

$$\left\{0, -2, 25, \frac{1}{\sqrt{4}}, 0.49, \sqrt{3}, -\frac{1}{7}, \sqrt[3]{16}, \sqrt{9}\right\}$$

2. State the property of real numbers being used.

$$(2x+3y)+4z = 2x+(3y+4z)$$

3. Perform the indicated operations.

$$\frac{\frac{2}{5} + \frac{1}{2}}{\frac{1}{10} + \frac{3}{5}}$$

4. Evaluate each expression.

(a)
$$\left(\frac{5}{3}\right)^0 3^{-1}$$
 (b) $\frac{3^{-3}}{5^0}$ (c) $\left(\frac{1}{3}\right)^{-2}$

5. Evaluate the expression.

$$\sqrt{8}\sqrt{50}$$

- 6. Find the set $A \cap C$ if $A = \{x \mid x < 3\}$ and $C = \{x \mid -2 < x \le 10\}$.
- 7. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

 $\sqrt[3]{r^2s}\sqrt[3]{81r^4s^2}$

8. Perform the division and simplify.

$$\frac{x+4}{9x^2-4} \div \frac{x^2+8x+16}{3x^2+13x-10}$$

- **9.** A hummingbird's heart can beat 1260 times per minute. Estimate the number of times its heart will beat in 2 years. State your answer in scientific notation.
- **10.** Factor the expression completely.

$$x^{2}(x^{2}-4)-16(x^{2}-4)$$

11. Perform the indicated operation and simplify.

$$\frac{\frac{1}{x} - \frac{1}{3}}{\frac{1}{x} - 3}$$

12. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

13. Determine the values of the variable for which the expression is defined as a real number.

$$\left(\frac{1}{x^2+2x-15}\right)^{1/2}$$

- 14. The approximate distance d (in feet) that drivers travel after noticing that they must come to a sudden stop is given by the formula $d = x + \frac{x^2}{20}$, where x is the speed of the car in mi/h. If a car travels 120 ft before stopping, what was its speed before the brakes were applied?
- **15.** Solve the inequality.

$$x^{2} + x - 20 > 0$$

16. Two points P and Q are given. Sketch the line determined by P and Q, and find its equation in slope-intercept form.

$$P(1,-10), \quad Q(-2,-4)$$

- 17. Find the equation of the circle with center (-1,5) and radius $\sqrt{3}$.
- **18.** Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

$$x^2 + y^2 + x + 2y + \frac{5}{4} = 3$$

19. Test the equation for symmetry and sketch its graph.

$$9x + y^2 = 0$$

- **20.** Find an equation for the line that passes through the point (5,1) and is perpendicular to the line x-3y+16=0.
- **21.** Find the equation of a line that passes through the point (-7,1) and has slope of 1/2.
- **22.** Find the equation of the line in the figure.

- 23. Alyson drove from Bluesville to Greensburg at a speed of 60 mi/h. On the way back, she drove at 45 mi/h. The total trip took $5\frac{3}{5}$ h of driving time. Find the distance between these two cities.
- **24.** In a certain city, the property tax collected for a home varies directly to the valuation of the property. The tax collected on a \$105,000 home is \$2,846 per year. What is the value of a home if the tax collected is \$1,735 ?
- **25.** The cost for one print run of a book is jointly proportional to the number of pages in the book and the number of books in the print run. Write an equation for the cost of a print run if it costs \$20,000 to print 4000 copies of a 100-page book, and calculate the cost to print 400 copies of 293 page book.

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form B

- **1.** 0, -2, 25, $\frac{1}{\sqrt{4}}$, 0.49, $-\frac{1}{7}$, $\sqrt{9}$ 2. Associative Property for addition **3.** 9/7 **4.** (a) $\left(\frac{5}{3}\right)^0 3^{-1} = \frac{1}{3}$ (b) $\frac{3^{-3}}{5^0} = \frac{1}{27}$ (c) $\left(\frac{1}{3}\right)^{-2} = 9$ **5.** 20 6. $\{x \mid -2 < x < 3\}$ 7. $3r^2s\sqrt[3]{3}$ 8. $\frac{x+4}{9x^2-4} \div \frac{x^2+8x+16}{3x^2+13x-10} = \frac{(x+5)}{(x+4)(3x+2)}$ 9. 1.32×10^9 **10.** $x^2(x^2-4)-16(x^2-4)=(x-2)(x+2)(x-4)(x+4)$ 11. $-\frac{1}{3x}$ 12. $\frac{\sqrt{3}-1}{2}$ **13.** $(-\infty, -5) \cup (3, \infty)$ 14. 40 mi/hr **15.** $(-\infty, -5) \cup (4, \infty)$ **16.** y = -8 - 2x
- **17.** $x^2 + 2x + y^2 10y + 23 = 0$

ANSWER KEY

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form B

x-axis symmetry

- **20.** y = 16 3x
- **21.** $y = \frac{x}{2} + \frac{9}{2}$
- **22.** $y = \frac{4}{3}x \frac{5}{3}$
- **23.** 144 mi
- **24.** \$64,010
- **25.** \$5860

1. List the elements from the given set that are rational numbers.

$$\left\{ \begin{array}{l} 0, \ -2, \ 50, \ \frac{1}{\sqrt{2}}, \ 0.521, \ 2\sqrt{2}, \ 1.2\overline{3}, \ -\frac{1}{6}, \ \sqrt[3]{4}, \ \sqrt{4} \right\} \\ (a) \ 0, \ -2, \ 50, \ 1.2\overline{3}, \ -\frac{1}{6} \\ (b) \ 0, \ \frac{1}{\sqrt{2}}, \ 0.521, \ 2\sqrt{2}, \ -\frac{1}{6}, \ \sqrt{4} \\ (c) \ 0, \ -2, \ 50, \ 0.521, \ 1.2\overline{3}, \ -\frac{1}{6}, \ \sqrt{4} \\ (d) \ 0, \ \frac{1}{\sqrt{2}}, \ 2\sqrt{2}, \ \sqrt[3]{4} \\ (e) \ 0, \ -2, \ 50 \end{array} \right.$$

2. State the property of real numbers being used.

3xy = yx3

- (a) Commutative Property for addition
- (b) Commutative Property for multiplication
- (c) Associative Property for addition
- (d) Associative Property for multiplication
- (e) Distributive Property
- 3. Use the properties of real numbers to write the expression without parentheses.

$$2x\left(a-b-2c+\frac{d}{2}\right)$$

- (a) xa xb 2xc + xd(b) 2xa - 2xb - xc + 4xd(c) xa - 2xb - 4xc + xd(d) 2xa - 2xb - 4xc + xd(e) $2xa - xb - 4xc + \frac{xd}{4}$
- 4. Which inequality is *not* true?

(a)
$$-\frac{1}{10} < -\frac{1}{100}$$

(b) $7 \le 7$
(c) $\sqrt{3} > 1.7$
(d) $-\frac{1}{4} \le -0.25$

(e) all are true

5. Write the statement in terms of an inequality.

The distance from x to 3 is at most 6.

(a) $|x-3| \le 6$ (b) $|x-3| \ge 6$ (c) |x-3| < 6(d) $|x-6| \le 3$ (e) $|x-6| \ge 3$

6. Find the set $A \cap C$ if $A = \{x \mid x < 4\}$ and $C = \{x \mid -2 < x \le 6\}$.

- (a) $\{ x \mid -2 < x < 4 \}$ (b) $\{ x \mid -2 < x < 6 \}$ (c) $\{ x \mid 4 < x < 6 \}$ (d) $\{ x \mid -2 < x \le 6 \}$
- (e) none
- 7. Perform the indicated operations.
 - $\frac{\frac{1}{10}}{\frac{1}{3} \frac{1}{5}}$
 - (a) 1 (b) 3/2 (c) -3/2 (d) 2 (e) 3/4
- **8.** Evaluate the expression.
 - $\sqrt{3}\sqrt{48}$
 - (a) 36 (b) 24 (c) 12 (d) $2\sqrt{6}$ (e) $4\sqrt{3}$
- **9.** Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

$$\sqrt[3]{r^2s}\sqrt[3]{64r^4s^2}$$
(a) $4r^3s^2$
(b) $64r^6s^3$
(c) $\sqrt[3]{4r^4s^2}$
(d) $8r^2s$
(e) $4r^2s$

10. Simplify the expression.

$$\left(\frac{3}{2}xy^{3}\right)\left(\frac{3}{4}x^{-1}y\right)^{-2}$$
(a) $\frac{8y^{3}}{3x^{2}}$
(b) $\frac{8}{3}x^{3}y$
(c) $\frac{3}{4}xy$
(d) $\frac{3y}{8x^{3}}$
(e) $\frac{3}{2}xy^{3}$

11. Perform the division and simplify.

$$\frac{x+2}{9x^2-4} \div \frac{x^2+6x+8}{3x^2+13x-10}$$
(a) $\frac{(x+5)}{(x-4)}$
(b) $\frac{(x+4)(3x+2)}{(x+5)}$
(c) $\frac{(x-5)}{(x+4)(3x-2)}$
(d) $\frac{(x+5)}{(x+4)(3x+2)}$
(e) none of these

- **12.** A typical hummingbird's heart can beat 1260 times per minute. Estimate the number of times its heart will beat in 2 years. State your answer in scientific notation.
 - (a) 1.32×10^9
 - (b) 6.62×10^8
 - (c) 6.32×10^9
 - (d) 1.32×10^{-9}
 - (e) 6.32×10^{-9}

13. Alyson drove from Greensville to Bluesburg at a speed of 50 mi/h. On the way back, she drove at 75 mi/h. The total trip took $7\frac{1}{2}$ h of driving time. Find the distance between these two cities.

(a) 225 mi (b) 175 mi (c) 185 mi (d) 125 mi (e) 450 mi

- **14.** Factor the expression completely.
 - $2x^3 + x + 6x^2 + 3$
 - (a) (2x+3)(x+1)(x+1)
 - (b) $(x+3)(2x^2+1)$
 - (c) $(2x+3)(x^2+1)$
 - (d) $(x^2+3)(2x+1)$
 - (e) none of these
- 15. Perform the subtraction and simplify.

$$\frac{2}{x+3} - \frac{1}{x^2+5x+6}$$
(a) $\frac{2x+11}{x^2+7x+6}$
(b) $\frac{1}{x^2+5x+6}$
(c) $\frac{2x+1}{x^2+5x+6}$
(d) $\frac{2x+3}{x^2+5x+6}$
(e) none of these

16. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6} + \sqrt{2}}$$
(a) $\frac{\sqrt{3}}{4}$ (b) $\frac{\sqrt{2} + 1}{2}$ (c) $\frac{2\sqrt{3} - 1}{4}$ (d) $\frac{\sqrt{3} - \sqrt{2}}{2}$ (e) $\frac{\sqrt{3} - 1}{2}$

17. Find all real solutions of the equation.

$$\frac{x+2}{x-2} = \frac{3x}{3x-6}$$
(a) {-2,2} (b) $\left\{\frac{4}{3}, 3\right\}$ (c) $\left\{-\frac{4}{3}, 2\right\}$ (d) {2} (e) no solution

- 18. Solve the absolute value inequality. Express the answer using interval notation.
 - |8x+7| > 14
 - (a) $(-\infty, 7/8) \cup (7/8, \infty)$
 - (b) $(7/8,\infty)$
 - (c) $(-\infty, -21/8) \cup (7/8, \infty)$
 - (d) $(-\infty, -7/8) \cup (21/8, \infty)$
 - (e) none of these
- 19. The approximate distance d (in feet) that drivers travel after noticing that they must come to a sudden stop is given by the formula $d = x + \frac{x^2}{20}$, where x is the speed of the car in mi/h. If a car travels 175 ft before stopping, what was its speed before the brakes were applied?
 - (a) 40 mi/hr
 - (b) 50 mi/hr
 - (c) 70 mi/hr
 - (d) 80 mi/hr
 - (e) 90 mi/hr
- **20.** Find the equation of the circle with center (-1,7) and radius $\sqrt{2}$.
 - (a) $x^2 + 2x + y^2 14y + 48 = 0$
 - (b) $x^2 2x + y^2 14y + 48 = 0$
 - (c) $x^2 + 2x + y^2 + 14y + 48 = 0$
 - (d) $x^2 + 2x + 14y + 48 = 0$
 - (e) $x^2 + 14x + y^2 2y + 48 = 0$
- 21. Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

$$x^2 + y^2 + x + 2y + \frac{5}{4} = 3$$

(a) point

(b) no graph $\begin{pmatrix} 1 \\ \end{pmatrix}$

(c) center
$$\left(-\frac{1}{2},-1\right)$$
, radius $\sqrt{3}$
(d) center $\left(-\frac{1}{2},1\right)$, radius 3
(e) center $\left(\frac{1}{2},1\right)$, radius 9

- 22. Find an equation for the line that passes through the point (5,1) and is perpendicular to the line x-3y+16=0.
 - (a) y = x + 5
 - (b) $y = \frac{1}{5}x 16$
 - (c) y = 16 3x
 - (d) y = 3x + 15
 - (e) $y = \frac{1}{3}x \frac{2}{3}$

23. Find the equation of a line that passes through the point (-7, 7/2) and the midpoint of (-2, 4) and (3, 4).

- (a) 30y 2x 119 = 0
- (b) 2y 30x = 0
- (c) 40y 120x 119 = 0
- (d) 3y 2x 19 = 0
- (e) 30y 40x 119 = 0
- **24.** In a certain city, the property tax collected for a home is directly proportional to the valuation of the property. The tax collected on a \$105,000 home is \$2,846 per year. What is the value of a home if the tax collected is \$1,735 ?
 - (a) \$74,866
 - (b) \$834,289
 - (c) \$175,387
 - (d) \$64,010
 - (e) \$85,259
- **25.** The resistance of a wire varies directly as its length and inversely as the square of its diameter. A wire 50 m long and 0.01 m in diameter has a resistance of 25 ohms. Find the resistance of a wire made of the same material that is 20 m long and has diameter 0.02 m.
 - (a) 2.5 ohms
 (b) 0.02 ohms
 (c) 50.54 ohms
 (d) 0.25 ohms
 (e) 2500 ohms

ANSWER KEY

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form C

1. c

b
 d

4. e

5. a

6. a 7. e

8. c

9. e

10. b

11. d

12. a 13. a

14. b

15. d

16. e 17. e

17. c 18. c

19. b

20. a

21. c

22. c

23. a

24. d 25. a 1. List the elements from the given set that are rational numbers.

$$\left\{-3.13, -1, 7, \frac{1}{\sqrt{9}}, 0.521, \frac{\sqrt{2}}{2}, 2.\overline{45}, -\frac{1}{9}, \sqrt[3]{8}, \sqrt{8}\right\}$$
(a) $-3.13, -1, 7, \frac{1}{\sqrt{9}}, 0.521, 2.\overline{45}, -\frac{1}{9}, \sqrt[3]{8}$
(b) $\frac{1}{\sqrt{9}}, \frac{\sqrt{2}}{2}, 2.\overline{45}, \sqrt[3]{8}, \sqrt{8}$
(c) $-1, 7, 0.521, 2.\overline{45}, -\frac{1}{9}$
(d) only 7
(e) all are rational

2. State the property of real numbers being used.

$$(x+8y)+6z = x+(8y+6z)$$

- (a) Commutative Property for addition
- (b) Commutative Property for multiplication
- (c) Associative Property for addition
- (d) Associative Property for multiplication
- (e) Distributive Property
- 3. Use the properties of real numbers to write the expression without parentheses.

$$4x\left(a - \frac{c}{4} + \frac{d}{2}\right)$$

- (a) 4xa + xc + 2dx
- (b) $4xa \frac{xc}{2} + dx$
- (c) 4xa xc + 2dx
- (d) 4a c + 2d
- (e) xa xc + 4dx
- 4. Which inequality is *not* true?

(a)
$$-100 < -\frac{1}{100}$$

(b) $7 \le 7$
(c) $\sqrt{3} > 1.7$
(d) $-\frac{1}{4} \le -0.25$
(e) all are true

5. Write the statement in terms of an inequality.

The distance from x to 4 is at most 5.5.

(a) $|x-4| \le 5.5$ (b) $|x-4| \ge 5.5$ (c) |x-4| < 5.5(d) $|x-1.5| \le 4$ (e) $|x-5.5| \ge 4.5$

6. Find the set $A \cap C$ if $A = \{x \mid x < 7\}$ and $C = \{x \mid -2 < x \le 8\}$.

- (a) $\{ x \mid -2 < x < 8 \}$ (b) $\{ x \mid -7 < x < 8 \}$
- (c) $\{ x | 7 < x < 8 \}$
- (d) $\{ x \mid -2 < x < 7 \}$
- (e) none
- 7. Evaluate the expression.

 $2^{-1} - 2^{-2}$

(a) 0 (b) 1/4 (c) -2 (d) 2 (e) 1/8

8. Evaluate the expression.

 $\sqrt{3}\sqrt{48}$

(a) 36 (b) 24 (c) 12 (d) $2\sqrt{6}$ (e) $4\sqrt{3}$

9. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

 $\sqrt[3]{r^2s}\sqrt[3]{81r^4s^2}$

- (a) $9r^3s\sqrt{s}$
- (b) $9r^2\sqrt{s}$

(c)
$$9r^2s$$

- (d) $4r^2\sqrt[3]{3s}$
- (e) $3r^2s\sqrt[3]{3}$

10. Simplify the expression.

$$\frac{x^{2} - x - 6}{x^{2} + 2x} \cdot \frac{x^{2} + x}{x^{2} - 2x - 3}$$
(a) 1 (b) 2 (c) $\frac{1}{x(x+2)}$ (d) $\frac{(x+1)}{x}$ (e) $\frac{(x+1)}{(x-3)}$

11. Perform the indicated operation and simplify.

$$\frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$$
(a) 0 (b) $-\frac{1}{(x - 3)}$ (c) $\frac{1}{x(x - 3)}$ (d) $-\frac{1}{3x}$ (e) $-3x$

12. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

a) $-\frac{2}{\sqrt{3} - 1}$ (b) $\frac{\sqrt{6} - 1}{2}$ (c) $\frac{\sqrt{3} - 1}{2}$ (d) $\sqrt{6} - \sqrt{2}$ (e) $\sqrt{6} + \sqrt{2}$

13. Determine the values of the variable for which the expression is defined as a real number.

$$\left(\frac{1}{x^2 - 5x - 24}\right)^{1/2}$$

a) [3,8] (b) $(-\infty, -3) \cup (8, \infty)$ (c) $(0, \infty)$ (d) $(-\infty, -8) \cup (3, \infty)$ (e) none of these

14. The approximate distance *d* (in feet) that drivers travel after noticing that they must come to a sudden stop is given by the formula $d = x + \frac{x^2}{20}$, where *x* is the speed of the car in mi/h. If a car travels 175 ft before stopping, what was its speed before the brakes were applied?

(a) 40 mi/hr (b) 50 mi/hr (c) 70 mi/hr (d) 80 mi/hr (e) 90 mi/hr

15. Solve the inequality.

$$x^{2} + 3x - 18 \le 0$$
(a) $(-\infty, -6) \cup (-3, \infty)$
(b) $(-\infty, -6] \cup [3, \infty)$
(c) $(-3, 6)$
(d) $[-6, -3]$
(e) $[-6, 3]$

16. Find all real solutions of the quadratic equation.

$$z^{2} - \frac{6}{5}z + \frac{9}{25} = 0$$

(a) $-\frac{3}{5}, \frac{3}{5}$ (b) $-\frac{5}{3}, \frac{3}{5}$ (c) $\frac{5}{3}$ (d) 1 (e) none of these

17. Two points P and Q are given.

 $P(0,-8), \quad Q(-11,-8)$

Find the distance from P to Q.

(a) 11 (b) 5 (c) 19 (d) 8 (e) 9

18. Find the equation of the circle with center (-2, 1) and radius $\sqrt{3}$.

- (a) $x^{2} + 4x + y^{2} 2y + 8 = 0$ (b) $x^{2} + 4x + y^{2} - 2y + 2 = 0$ (c) $x^{2} + 4x + y^{2} - y - 8 = 0$ (d) $x^{2} + 2x + y^{2} - 2y + 8 = 0$ (e) $x^{2} - 4x + y^{2} + 2y + 2 = 0$
- **19.** Test the equation for symmetry to determine the correct graph.

 $y^2 - 3x = 0$

(e) none

- **20.** Find an equation for the line that passes through the point (-1,7) and is parallel to the line x = 2y 1.
 - (a) y = x + 15(b) $y = \frac{x}{2} + \frac{15}{2}$ (c) y = 15 - x(d) $y = 2x + \frac{15}{2}$ (e) $y = x - \frac{1}{2}$
- **21.** Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

$$x^2 + y^2 - 8x + 4y + 18 = 0$$

(a) point

- (b) no graph
- (c) center (4, -2), radius $\sqrt{2}$

(d) center
$$\left(-\frac{1}{2},4\right)$$
, radius $\sqrt{2}$

- (e) center (-4, 2), radius 4
- 22. Find the equation of the line in the figure.

- (a) 4x + 3y = 3
- (b) 5x + 3y = 2
- (c) $\frac{4}{9}x + \frac{8}{3}y = 0$

(d)
$$y = \frac{4}{3}x - \frac{5}{3}$$

(e) The equation of the line cannot be determined.

23. Taylor drove from Greensville to Bluesburg at a speed of 50 mi/h. On the way back, he drove at 75 mi/h. The total trip took $7\frac{1}{2}$ h of driving time. Find the distance between these two cities.

(a) 225 mi (b) 175 mi (c) 185 mi (d) 125 mi (e) 450 mi

24. The pressure of a sample of gas is directly proportional to the temperature *T* and inversely proportional to the volume *V*. Write an equation that expresses this fact if 50 L of gas exerts a pressure of 14 kPa at a temperature of 350° K (absolute temperature measured on the Kelvin scale).

(a)
$$P = \frac{2T}{V}$$

(b)
$$P = \frac{2V}{T}$$

(c)
$$PV = T$$

(d)
$$P = \frac{50T}{V}$$

(e)
$$P = 2TV$$

25. The resistance of a wire varies directly as its length and inversely as the square of its diameter. A wire 50 m long and 0.01 m in diameter has a resistance of 25 ohms. Find the resistance of a wire made of the same material that is 20 m long and has diameter 0.02 m.

(a) 2.5 ohms (b) 0.02 ohms (c) 50.54 ohms (d) 0.25 ohms	(e) 2500 ohms
---	---------------

ANSWER KEY

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form D

1. a

2. c 3. c

- **4.** e
- **5.** a
- **6.** d **7.** b
- 8. c
- 9. e
- **10.** a
- 11. d

12. c

- 13. b 14. b
- 15. e
- 16. e

17. a

- 18. b
- **19.** a **20.** b
- 21. c 22. d
- **23.** a
- 24. a 25. a

1. List the elements from the given set that are rational numbers.

$$\left\{ \begin{array}{l} 0, \ -2, \ 50, \ \frac{1}{\sqrt{2}}, \ 0.521, \ 2\sqrt{2}, \ 1.2\overline{3}, \ -\frac{1}{6}, \ \sqrt[3]{4}, \ \sqrt{4} \right\} \\ (a) \ 0, \ -2, \ 50, \ 1.2\overline{3}, \ -\frac{1}{6} \\ (b) \ 0, \ \frac{1}{\sqrt{2}}, \ 0.521, \ 2\sqrt{2}, \ -\frac{1}{6}, \ \sqrt{4} \\ (c) \ 0, \ -2, \ 50, \ 0.521, \ 1.2\overline{3}, \ -\frac{1}{6}, \ \sqrt{4} \\ (d) \ 0, \ \frac{1}{\sqrt{2}}, \ 2\sqrt{2}, \ \sqrt[3]{4} \\ (e) \ 0, \ -2, \ 50 \end{array} \right.$$

2. State the property of real numbers being used.

$$(2x+3y)+4z = 2x+(3y+4z)$$

- (a) Commutative Property for addition
- (b) Commutative Property for multiplication
- (c) Associative Property for addition
- (d) Associative Property for multiplication
- (e) Distributive Property
- **3.** Perform the indicated operations.

$$\frac{\frac{2}{3} + \frac{1}{2}}{\frac{1}{10} + \frac{3}{5}}$$

4. Which inequality is *not* true?

(a)
$$-\frac{1}{10} < -\frac{1}{100}$$
 (b) $7 \le 7$ (c) $\sqrt{3} > 1.7$ (d) $-\frac{1}{4} \le -0.25$ (e) all are true

5. Evaluate each expression.

(a)
$$\left(\frac{7}{3}\right)^{0} 2^{-1}$$

(b) $\frac{3^{-3}}{4^{0}}$
(c) $\left(\frac{1}{5}\right)^{-2}$

- 6. Find the set $A \cap C$ if $A = \{x \mid x < 4\}$ and $C = \{x \mid -2 < x \le 6\}$.
 - (a) $\{ x \mid -2 < x < 4 \}$ (b) $\{ x \mid -2 < x < 6 \}$ (c) $\{ x \mid 4 < x < 6 \}$ (d) $\{ x \mid -2 < x \le 6 \}$ (e) none
- 7. Evaluate the expression.

$$\sqrt{3}\sqrt{48}$$

(a) 36 (b) 24 (c) 12 (d) $2\sqrt{6}$ (e) $4\sqrt{3}$

8. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

$$\sqrt[3]{r^2s}\sqrt[3]{81r^4s^2}$$

- **9.** A hummingbird's heart can beat 1260 times per minute. Estimate the number of times its heart will beat in 2 years. State your answer in scientific notation.
- **10.** Simplify the expression.

$$\left(\frac{3}{2}xy^{3}\right)\left(\frac{3}{4}x^{-1}y\right)^{-2}$$
(a) $\frac{8y^{3}}{3x^{2}}$ (b) $\frac{8}{3}x^{3}y$ (c) $\frac{3}{4}xy$ (d) $\frac{3y}{8x^{3}}$ (e) $\frac{3}{2}xy^{3}$

11. Perform the subtraction and simplify.

$$\frac{2}{x+3} - \frac{1}{x^2 + 8x + 15}$$

12. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6}+\sqrt{2}}$$

13. Find all real solutions of the equation.

$$\frac{x+2}{x-2} = \frac{3x}{3x-6}$$

- **14.** Factor the expression completely.
 - $2x^3 + x + 10x^2 + 5$
 - (a) $(x+5)(2x+1)^2$
 - (b) $(x+2)(5x^2+1)$
 - (c) (x+1)(x+5)(2x+1)
 - (d) $(x-5)(2x^2-1)$
 - (e) none of these
- 15. Solve the absolute value inequality. Express the answer using interval notation.

|8x+5| > 15

16. Two points P and Q are given. Sketch the line determined by P and Q, and find its equation in slope-intercept form.

$$P(1,-10), \quad Q(2,-12)$$

- 17. Find the equation of the circle with center (-1,7) and radius $\sqrt{2}$.
- **18.** Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

 $x^{2} + y^{2} + x + 2y + 5/4 = 3$

19. Test the equation for symmetry and sketch its graph.

 $y + x^2 = 16$

- **20.** Find the area of the right triangle with base AB, where the vertices are A = (-3, 0), B = (2, 0) and C = (2, 4).
- **21.** Find the equation of a line that passes through the point (-7, 7/2) and the midpoint of (-2, 4) and (3, 4).
- 22. Find an equation for the line that passes through the point (5,1) and is perpendicular to the line x-3y+16=0.
 - (a) y = x + 5
 - (b) $y = \frac{1}{5}x 16$
 - (c) y = 16 3x
 - (d) y = 3x + 15
 - (e) $y = \frac{1}{3}x \frac{2}{3}$

- 23. Caitlin drove from Greensville to Bluesburg at a speed of 50 mi/h. On the way back, she drove at 75 mi/h. The total trip took $7\frac{1}{2}$ h of driving time. Find the distance between these two cities.
- 24. In a certain city, the property tax collected for a home is directly proportional to the valuation of the property. The tax collected on a \$105,000 home is \$2,846 per year. What is the value of a home if the tax collected is \$1,735 ?
 - (a) \$74,866
 - (b) \$834,289
 - (c) \$175,010
 - (d) \$64,010
 - (e) \$85,259
- **25.** The resistance of a wire varies directly as its length and inversely as the square of its diameter. A wire 50 m long and 0.01 m in diameter has a resistance of 25 ohms. Find the resistance of a wire made of the same material that is 20 m long and has diameter 0.02 m.

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form E

1.	c
2.	c
3.	5/3
4.	e
5.	(a) $\left(\frac{7}{3}\right)^0 2^{-1} = \frac{1}{2}$ (b) $\frac{3^{-3}}{4^0} = \frac{1}{27}$ (c) $\left(\frac{1}{5}\right)^{-2} = 25$
6.	a
7.	c
8.	$3r^2s\sqrt[3]{3}$
9.	1.32×10 ⁹
10.	b
11.	$\frac{2}{x+3} - \frac{1}{x^2 + 8x + 15} = \frac{2x+9}{x^2 + 8x + 15}$
12.	$\frac{\sqrt{3}-1}{2}$
13.	no solution
14.	e
15.	$(-\infty, -5/2) \cup (5/4, \infty)$
16.	y = -8 - 2x
	2 2 2 4 -2 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
17.	$x^2 + 2x + y^2 - 14y + 48 = 0$

18. center $\left(-\frac{1}{2}, -1\right)$, radius $\sqrt{3}$

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form E

y-axis symmetry

- **20.** 10
- **21.** 30y 2x 119 = 0
- 22. c
- **23.** 225 mi
- **24.** d
- **25.** 2.5 ohms

1. List the elements from the given set that are rational numbers.

$$\left\{0, -2, 25, \frac{1}{\sqrt{4}}, 0.49, \sqrt{3}, -\frac{1}{7}, \sqrt[3]{16}, \sqrt{9}\right\}$$

2. State the property of real numbers being used.

3xy = yx3

- (a) Commutative Property for addition
- (b) Commutative Property for multiplication
- (c) Associative Property for addition
- (d) Associative Property for multiplication
- (e) Distributive Property
- **3.** Perform the indicated operations.

$$\frac{\frac{2}{5} + \frac{1}{2}}{\frac{1}{10} + \frac{3}{5}}$$

4. Evaluate the expression.

$$3^{1/2}27^{1/2}$$

5. Simplify the expression and eliminate any negative exponents(s). Assume that all letters denote positive numbers.

$$\sqrt[3]{x\sqrt{x}}$$

- 6. Find the set $A \cap C$ if $A = \{x \mid x < 3\}$ and $C = \{x \mid -2 < x \le 10\}$.
- 7. Evaluate each expression.

(a)
$$\left(\frac{5}{3}\right)^0 3^{-1}$$

(b) $\frac{3^{-3}}{5^0}$
(c) $\left(\frac{1}{3}\right)^{-2}$

8. Simplify the expression.

$$\frac{x^2 - x - 6}{x^2 + 2x} \cdot \frac{x^2 + x}{x^2 - 2x - 3}$$

9. Simplify the expression.

$$\sqrt[3]{\left(27x^3y\right)^2y^4}$$

- (a) $3x^2y$
- (b) $27x^3y^2$
- (c) 3y
- (d) $\sqrt[3]{9}x^2y^3$
- (e) $9x^2y^2$
- **10.** Factor the expression completely.

$$x^{2}(x^{2}-4)-16(x^{2}-4)$$

- 11. Perform the indicated operation and simplify.
 - $\frac{\frac{1}{x} \frac{1}{3}}{x 3}$

(a) 0 (b)
$$-\frac{1}{(x-3)}$$
 (c) $\frac{1}{x(x-3)}$ (d) $-\frac{1}{3x}$ (e) $-3x$

12. Rationalize the denominator.

$$\frac{\sqrt{2}}{\sqrt{6}+\sqrt{2}}$$

13. Determine the values of the variable for which the expression is defined as a real number.

$$\left(\frac{1}{x^2 - 5x - 24}\right)^{1/2}$$

- 14. The approximate distance d (in feet) that drivers travel after noticing that they must come to a sudden stop is given by the formula $d = x + \frac{x^2}{20}$, where x is the speed of the car in mi/h. If a car travels 175 ft before stopping, what was its speed before the brakes were applied?
- 15. Solve the absolute value inequality. Express the answer using interval notation.

|8x+5| > 15

16. Find all real solutions of the quadratic equation.

$$z^2 - \frac{8}{5}z + \frac{16}{25} = 0$$

17. Two points P and Q are given.

 $P(0,-8), \quad Q(-11,-8)$

Find the distance from P to Q.

(a) 11 (b) 5 (c) 19 (d) 8 (e) 9

- **18.** If M(2,1) is the midpoint of the line segment AB, and if A has coordinates $\left(-\frac{1}{2},6\right)$, find the coordinates of B.
- **19.** Test the equation for symmetry to determine the correct graph.
 - $y^2 3x = 0$

(a) *x-axis symmetry*

(b) x-axis symmetry

(c) y-axis symmetry

(d) *origin- symmetry*

(e) none

- **20.** Find an equation for the line that passes through the point (5,1) and is perpendicular to the line x-3y+16=0.
- **21.** Determine whether the equation represents a circle, a point, or has no graph. If the equation is that of a circle, find its center and radius.

$$x^2 + y^2 - 8x + 4y + 18 = 0$$

- (a) point
- (b) no graph
- (c) center (4, -2), radius $\sqrt{2}$
- (d) center $\left(-\frac{1}{2},4\right)$, radius $\sqrt{2}$
- (e) center (-4, 2), radius 4

22. Find the equation of the line in the figure.

- 23. Taylor drove from Bluesville to Greensburg at a speed of 60 mi/h. On the way back, he drove at 45 mi/h. The total trip took $5\frac{3}{5}$ h of driving time. Find the distance between these two cities.
- 24. The pressure of a sample of gas is directly proportional to the temperature *T* and inversely proportional to the volume *V*. Write an equation that expresses this fact if 50 L of gas exerts a pressure of 14 kPa at a temperature of 350° K (absolute temperature measured on the Kelvin scale).

(a)
$$P = \frac{2T}{V}$$
 (b) $P = \frac{2V}{T}$ (c) $PV = T$ (d) $P = \frac{50T}{V}$ (e) $P = 2TV$

25. The cost for one print run of a book is jointly proportional to the number of pages in the book and the number of books in the print run. Write an equation for the cost of a print run if it costs \$20,000 to print 4000 copies of a 100-page book, and calculate the cost to print 400 copies of 293 page book.

Stewart/Redlin/Watson - Precalculus 7e Chapter 1 Form F

1. 0, -2, 25, $\frac{1}{\sqrt{4}}$, 0.49, $-\frac{1}{7}$, $\sqrt{9}$ **2.** b 3. 9/7 **4.** 9 5. $\sqrt[3]{x\sqrt{x}} = (x\sqrt{x})^{1/3} = (x^{2/2}x^{1/2})^{1/3} = (x^{3/2})^{1/3} = x^{1/2} = \sqrt{x}$ 6. $\{x \mid -2 < x < 3\}$ 7. (a) $\left(\frac{5}{3}\right)^0 3^{-1} = \frac{1}{3}$ (b) $\frac{3^{-3}}{5^0} = \frac{1}{27}$ (c) $\left(\frac{1}{3}\right)^{-2} = 9$ **8.** 1 9. e **10.** $x^2(x^2-4)-16(x^2-4)=(x-2)(x+2)(x-4)(x+4)$ **11.** d 12. $\frac{\sqrt{3}-1}{2}$ **13.** $(-\infty, -3) \cup (8, \infty)$ 14. 50 mi/hr **15.** $(-\infty, -5/2) \cup (5/4, \infty)$ **16.** $z = \frac{4}{5}$ **17.** a **18.** (9/2, -4)**19.** a **20.** y = 16 - 3x**21.** c 22. $y = \frac{4}{3}x - \frac{5}{3}$ **23.** 144 mi **24.** a 25. \$5860